metal-organic papers

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

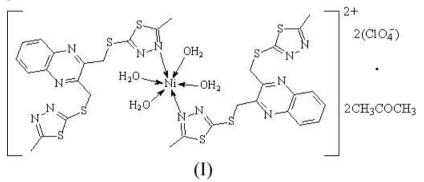
Ya-Bo Xie,* Xiang-Jie Wang and Dao Wang

College of Environmental and Energy Engineering, Beijing University of Technology, Beijing 100022, People's Republic of China

Correspondence e-mail: xieyabo@bjut.edu.cn

Key indicators

Single-crystal X-ray study T = 293 K Mean σ (C–C) = 0.008 Å R factor = 0.063 wR factor = 0.111 Data-to-parameter ratio = 15.9


For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

Tetraaquabis[2,3-bis(5-methyl-1,3,4-thiadiazol-2-ylsulfanylmethyl)quinoxaline]nickel(II) bis(perchlorate) acetone disolvate

In the centrosymmetric, mononuclear title complex, $[Ni(L)_2(H_2O)_4](CIO_4)_2 \cdot 2C_3H_6O$ [L = 2,3-bis(5-methyl-1,3,4thiadiazol-2-ylsulfanylmethyl)quinoxaline, $C_{16}H_{14}N_6S_4$], the Ni^{II} center adopts a slightly distorted octahedral coordination geometry, formed by two N atoms from two distinct ligands and four O atoms from water molecules. Only one N atom of Ltakes part in coordinating to the Ni^{II} atom.

Comment

The generation of coordination architectures depends mainly on the combination of two factors, *viz*. the coordination geometry of metal ions and the nature of the ligands (Sun *et al.*, 2002; Goodgame *et al.*, 2002; Hamblin *et al.*, 2002). Multithioether ligands possess unusual potential for structure control in inorganic chemistry, and many crystal structures of complexes with multithioether ligands have been reported (Li *et al.*, 2003; Zheng *et al.*, 2003). The crystal structure of a nickel(II) complex, $[Ni(L)_2(H_2O)_4](CIO_4)_2 \cdot 2CH_3COCH_3$, (I), with a flexible dithioether ligand, namely 2,3-bis(5-methyl-1,3,4-thiadiazol-2-ylsulfanylmethyl)quinoxaline (*L*), is reported here.

The structure of the title complex consists of a mononuclear $[Ni(L)_2(H_2O)_4]^{2+}$ cation, two ClO_4^- anions and two uncoordinated CH₃COCH₃ molecules (Fig. 1). The $[Ni(L)_2(H_2O)_4]^{2+}$ cation is centrosymmetric, with the Ni^{II} atom residing on an inversion center. The Ni^{II} atom is coordinated by two N atoms from two distinct ligands (L) and four O atoms from water molecules, giving a slightly distorted octahedral coordination geometry with the *cis* bond angles around the Ni^{II} center in the range 88.16 (13) to 92.97 (12)°. As shown in Table 1, the Ni-N bond length is 2.129 (4) Å, while the Ni–O bond lengths are unequal with values for Ni1-O1 and Ni1-O2 of 2.089 (3) and 2.050 (3) Å, respectively. In the title complex, although each ligand has ten potential donors (six N and four S), only one N atom takes part in coordination to the Ni^{II} center. The dihedral angle formed by the two thiadiazole rings of the same ligand is 63.5 (3)°. In the crystal structure $O-H \cdots O$ and O-

© 2005 International Union of Crystallography Printed in Great Britain – all rights reserved Received 16 September 2005 Accepted 20 September 2005 Online 28 September 2005

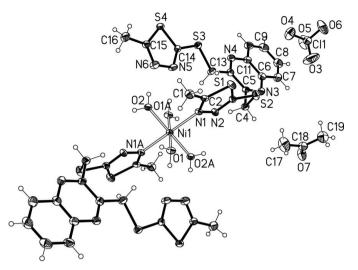


Figure 1

Structure of (I), showing displacement ellipsoids at the 30% probability level [symmetry code: (A) 2 - x, 1 - y, 1 - z]. The symmetry-related perchlorate ion and acetone molecule are not shown.

 $H \cdots N$ intramolecular and intermolecular hydrogen bonds stabilize the packing (see Table 2).

Experimental

The reaction of 2,3-bis(bromomethyl)quinoxaline (0.01 mol, 3.16 g) with 5-methyl-2-sulfanyl-1,3,4-thiadiazole (0.021 mol, 2.78 g), in the presence of KOH (0.021 mol, 1.47 g, 80%), gave the ligand *L* in good yield (3.51 g, 84%). Analysis calculated for $C_{16}H_{14}N_6S_4$: C 45.91, H 3.37, N 20.08%; found: C 45.74, H 3.49, N 20.28%; ¹H NMR (CDCl₃): 2.72 (*s*, 6H, CH₃), 5.10 (*s*, 4H, SCH₂), 7.73–8.07 (*m*, 4H, Ar–H). The title complex was synthesized by carefully layering a solution of Ni(ClO₄)₂·6H₂O (36.6 mg, 0.1 mmol) in CH₃COCH₃ on top of a solution of *L* (42.0 mg, 0.1 mmol) in chloroform in a test-tube. After about three days at room temperature, blue–green single crystals suitable for X-ray investigation appeared at the boundary between acetone and chloroform with a yield of 22%. IR (KBr, cm⁻¹): 3441(*s*), 1629 (*w*), 1571 (*w*), 1490 (*m*), 1339 (*m*), 1296 (*m*), 1133 (*m*), 1018 (*m*), 838 (*vs*), 770 (*s*), 556 (*s*).

Crystal data

$ \begin{bmatrix} \text{Ni}(\text{C}_{16}\text{H}_{14}\text{N}_{6}\text{S}_{4})_{2}(\text{H}_{2}\text{O})_{4} \end{bmatrix} (\text{CIO}_{4})_{2} \\ - 2\text{C}_{3}\text{H}_{6}\text{O} \\ M_{r} = 1282.97 \\ \text{Triclinic, } P\overline{1} \\ a = 8.300 \text{ (7) } \text{\AA}_{\circ} $	Z = 1 $D_x = 1.548 \text{ Mg m}^{-3}$ Mo $K\alpha$ radiation Cell parameters from 776 reflections	The authors thank supporting this work a for structural analysis
b = 12.223 (9) Å c = 13.964 (10) Å c = 13.964 (10) Å	$\theta = 2.4-26.3^{\circ}$ $\mu = 0.82 \text{ mm}^{-1}$	References
$\alpha = 81.108 (13)^{\circ}$ $\beta = 86.415 (12)^{\circ}$ $\gamma = 79.596 (13)^{\circ}$ $V = 1375.8 (18) \text{ Å}^{3}$	T = 293 (2) K Block, blue-green $0.20 \times 0.16 \times 0.12$ mm	Bruker (1998). SMART ((Version 2.03) and SHE Wisconsin, USA.
Data collection		Goodgame, D. M. L., Grach Dalton Trans. pp. 2259–2
Bruker SMART 1000 CCD area- detector diffractometer φ and ω scans Absorption correction: multi-scan (<i>SADABS</i> ; Bruker, 1998) $T_{min} = 0.789, T_{max} = 0.910$ 7534 measured reflections	5461 independent reflections 3264 reflections with $I > 2\sigma(I)$ $R_{int} = 0.034$ $\theta_{max} = 26.5^{\circ}$ $h = -10 \rightarrow 10$ $k = -7 \rightarrow 15$ $l = -17 \rightarrow 17$	 Hamblin, J., Childs, L. J., A Dalton Trans. pp. 164–10 Li, JR., Zhang, RH. & E Sheldrick, G. M. (1997) Göttingen, Germany. Sun, W. Y., Kusukawa, T. & 11571. Zhora, Y. Du, M. Li, L.B.
	$k = -7 \rightarrow 15$	

Refinement

$w = 1/[\sigma^2(F_o^2) + (0.0223P)^2]$
+ 1.5535 <i>P</i>]
where $P = (F_0^2 + 2F_c^2)/3$
$(\Delta/\sigma)_{\rm max} < 0.001$
$\Delta \rho_{\rm max} = 0.85 \text{ e } \text{\AA}^{-3}$
$\Delta \rho_{\rm min} = -0.58 \ {\rm e} \ {\rm \AA}^{-3}$

Table 1

Selected geometric parameters (Å, °).

Ni1-N1	2.129 (4)	Ni1-O2	2.050 (3)
Ni1-O1	2.089 (3)		
N1 ⁱ -Ni1-N1	180	O2-Ni1-O1	92.97 (12)
O1-Ni1-N1 ⁱ	88.16 (13)	O2-Ni1-N1 ⁱ	90.37 (13)
O1 ⁱ -Ni1-O1	180	O2-Ni1-N1	89.63 (13)
O2-Ni1-O1 ⁱ	87.03 (12)	O2 ⁱ -Ni1-O2	180

Symmetry code: (i) -x + 2, -y + 1, -z + 1.

Table 2			
Hydrogen-bond	geometry	(Å,	°).

D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
0.88	2.02	2.899 (5)	171
0.88	2.52	3.323 (5)	152
0.87	1.87	2.734 (5)	174
0.85	2.07	2.825 (5)	147
0.85	1.99	2.835 (5)	172
	0.88 0.88 0.87 0.85	0.88 2.02 0.88 2.52 0.87 1.87 0.85 2.07	0.88 2.02 2.899 (5) 0.88 2.52 3.323 (5) 0.87 1.87 2.734 (5) 0.85 2.07 2.825 (5)

Symmetry codes: (i) -x + 2, -y + 1, -z + 1; (ii) x + 1, y - 1, z - 1; (iii) x + 1, y, z - 1.

H atoms bonded to C atoms were included in calculated positions and treated in the subsequent refinement as riding atoms, with C– H = 0.93–0.97 Å and $U_{iso}(H) = 1.2U_{eq}(C)$ [1.5 $U_{eq}(C)$ for methyl H atoms] of the carrier atom. The H atoms of the water molecules were located in Fourier difference maps and refined with isotropic displacement parameters set at 1.2 times those of the parent O atoms.

Data collection: *SMART* (Bruker, 1998); cell refinement: *SMART*; data reduction: *SAINT* and *SHELXTL* (Bruker, 1998); program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *SHELXTL*; software used to prepare material for publication: *SHELXTL*.

The authors thank Beijing University of Technology for supporting this work and Dr Jianrong Li of Nankai University for structural analysis.

- Bruker (1998). *SMART* (Version 5.051), *SAINT* (Version 5.01), *SADABS* (Version 2.03) and *SHELXTL* (Version 6.1). Bruker AXS Inc., Madison, Wisconsin, USA.
- Goodgame, D. M. L., Grachvogel, D. A. & Williams, D. J. (2002). J. Chem. Soc. Dalton Trans. pp. 2259–2260.
- Hamblin, J., Childs, L. J., Alcock, N. W. & Hannon, M. J. (2002). J. Chem. Soc. Dalton Trans. pp. 164–169.
- Li, J.-R., Zhang, R.-H. & Bu, X.-H. (2003). Cryst. Growth Des. 3, 829-835.
- Sheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Göttingen, Germany.
- Sun, W. Y., Kusukawa, T. & Fujita, M. (2002). J. Am. Chem. Soc. 124, 11570– 11571.
- Zheng, Y., Du, M., Li, J. R., Zhang, R. H. & Bu, X. H. (2003). *Dalton Trans.* pp. 1509–1514.